|
Mathematics 2013
Maximizing the number of nonnegative subsetsAbstract: Given a set of $n$ real numbers, if the sum of elements of every subset of size larger than $k$ is negative, what is the maximum number of subsets of nonnegative sum? In this note we show that the answer is $\binom{n-1}{k-1} + \binom{n-1}{k-2} + \cdots + \binom{n-1}{0}+1$, settling a problem of Tsukerman. We provide two proofs, the first establishes and applies a weighted version of Hall's Theorem and the second is based on an extension of the nonuniform Erd\H{o}s-Ko-Rado Theorem.
|