全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Strong forms of linearization for Hopf monoids in species

DOI: 10.1007/s10801-015-0585-2

Full-Text   Cite this paper   Add to My Lib

Abstract:

A vector species is a functor from the category of finite sets with bijections to vector spaces; informally, one can view this as a sequence of $S_n$-modules. A Hopf monoid (in the category of vector species) consists of a vector species with unit, counit, product, and coproduct morphisms satisfying several compatibility conditions, analogous to a graded Hopf algebra. We say that a Hopf monoid is strongly linearized if it has a "basis" preserved by its product and coproduct in a certain sense. We prove several equivalent characterizations of this property, and show that any strongly linearized Hopf monoid which is commutative and cocommutative possesses four bases which one can view as analogues of the classical bases of the algebra of symmetric functions. There are natural functors which turn Hopf monoids into graded Hopf algebras, and applying these functors to strongly linearized Hopf monoids produces several notable families of Hopf algebras. For example, in this way we give a simple unified construction of the Hopf algebras of superclass functions attached to the maximal unipotent subgroups of three families of classical Chevalley groups.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133