全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Soap bubbles and isoperimetric regions in the product of a closed manifold with Euclidean space

Full-Text   Cite this paper   Add to My Lib

Abstract:

For any closed Riemannian manifold $X$ we prove that large isoperimetric regions in $X\times{\mathbb R}^n$ are of the form $X\times$(Euclidean ball). We prove that if $X$ has non-negative Ricci curvature then the only soap bubbles enclosing a large volume are the products $X\times$(Euclidean sphere). We give an example of a surface $X$, with Gaussian curvature negative somewhere, such that the product $X\times{\mathbb R}$ contains stable soap bubbles of arbitrarily large enclosed volume which do not even project surjectively onto the $X$ factor.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133