全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On the annihilators and attached primes of top local cohomology modules

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let \frak a be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that {\rm Ann}_R(H_{\frak a}^{{\dim M}({\frak a}, M)}(M))= {\rm Ann}_R(M/T_R({\frak a}, M)), where T_R({\frak a}, M) is the largest submodule of M such that {\rm cd}({\frak a}, T_R({\frak a}, M))< {\rm cd}({\frak a}, M). Several applications of this result are given. Among other things, it is shown that there exists an ideal \frak b of R such that {\rm Ann}_R(H_{\frak a}^{\dim M}(M))={\rm Ann}_R(M/H_{\frak b}^{0}(M)). Using this, we show that if H_{\frak a}^{\dim R}(R)=0, then {\rm Att}_RH^{{\dim R}-1}_{\frak a}(R)=\{{\frak p}\in {\rm Spec}\,R|\,{\rm cd}({\frak a}, R/{\frak p})={\dim R}-1\}. These generalize the main results of \cite[Theorem 2.6]{BAG}, \cite[Theorem 2.3]{He} and \cite[Theorem 2.4]{Lyn}.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133