全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Optimal Binary Subspace Codes of Length 6, Constant Dimension 3 and Minimum Distance 4

DOI: 10.1090/conm/632/12627

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is shown that the maximum size of a binary subspace code of packet length $v=6$, minimum subspace distance $d=4$, and constant dimension $k=3$ is $M=77$; in Finite Geometry terms, the maximum number of planes in $\operatorname{PG}(5,2)$ mutually intersecting in at most a point is $77$. Optimal binary $(v,M,d;k)=(6,77,4;3)$ subspace codes are classified into $5$ isomorphism types, and a computer-free construction of one isomorphism type is provided. The construction uses both geometry and finite fields theory and generalizes to any $q$, yielding a new family of $q$-ary $(6,q^6+2q^2+2q+1,4;3)$ subspace codes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133