|
Mathematics 2013
Higher-dimensional solutions for a nonuniformly elliptic equationAbstract: We prove $m$-dimensional symmetry results, that we call $m$-Liouville theorems, for stable and monotone solutions of the following nonuniformly elliptic equation \begin{eqnarray*}\label{mainequ} - div(\gamma(\mathbf x') \nabla u(\mathbf x)) =\lambda (\mathbf x' ) f(u(\mathbf x)) \ \ \text{for}\ \ \mathbf x=(\mathbf x',\mathbf x'')\in\mathbf{R}^d\times\mathbf{R}^{s}=\mathbf{R}^n, \end{eqnarray*} where $0\le m
|