全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

On doubling metric measure spaces endowed with a strongly local regular Dirichlet form, we show some characterisations of pointwise upper bounds of the heat kernel in terms of global scale-invariant inequalities that correspond respectively to the Nash inequality and to a Gagliardo-Nirenberg type inequality when the volume growth is polynomial. This yields a new proof and a generalisation of the well-known equivalence between classical heat kernel upper bounds and relative Faber-Krahn inequalities or localized Sobolev or Nash inequalities. We are able to treat more general pointwise estimates, where the heat kernel rate of decay is not necessarily governed by the volume growth. A crucial role is played by the finite propagation speed property for the associated wave equation, and our main result holds for an abstract semigroup of operators satisfying the Davies-Gaffney estimates.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133