全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Existence and nonuniqueness of segregated solutions to a class of cross-diffusion systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the the Dirichlet problem for the cross-diffusion system \[ \partial_tu_i=\operatorname{div}\left(a_iu_i\nabla (u_1+u_2)\right)+f_i(u_1,u_2),\quad i=1,2,\quad a_i=const>0, \] in the cylinder $Q=\Omega\times (0,T]$. The functions $f_i$ are assumed to satisfy the conditions $f_1(0,r)=0$, $f_2(s,0)=0$, $f_1(0,r)$, $f_2(s,0)$ are locally Lipschitz-continuous. It is proved that for suitable initial data $u_0$, $v_0$ the system admits segregated solutions $(u_1,u_2)$ such that $u_i\in L^{\infty}(Q)$, $u_1+u_2\in C^{0}(\overline{Q})$, $u_1+u_2>0$ and $u_1\cdot u_2=0$ everywhere in $Q$. We show that the segregated solution is not unique and derive the equation of motion of the surface $\Gamma$ which separates the parts of $Q$ where $u_1>0$, or $u_2>0$. The equation of motion of $\Gamma$ is a modification of the Darcy law in filtration theory. Results of numerical simulation are presented.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133