全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On a family of quivers related to the Gibbons-Hermsen system

DOI: 10.1016/j.geomphys.2015.03.002

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce a family of quivers $Z_{r}$ (labeled by a natural number $r\geq 1$) and study the non-commutative symplectic geometry of the corresponding doubles $\mathbf{Q}_{r}$. We show that the group of non-commutative symplectomorphisms of the path algebra $\mathbb{C}\mathbf{Q}_{r}$ contains two copies of the group $\mathrm{GL}_{r}$ over a ring of polynomials in one indeterminate, and that a particular subgroup $\mathcal{P}_{r}$ (which contains both of these copies) acts on the completion $\mathcal{C}_{n,r}$ of the phase space of the $n$-particles, rank $r$ Gibbons-Hermsen integrable system and connects each pair of points belonging to a certain dense open subset of $\mathcal{C}_{n,r}$. This generalizes some known results for the cases $r=1$ and $r=2$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133