全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Comparison Theorems for Manifold with Mean Convex Boundary

DOI: 10.1142/S0219199715500108

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $M^n$ be an $n$-dimensional Riemannian manifold with boundary $\partial M$. Assume that Ricci curvature is bounded from below by $(n-1)k$, for $k\in \RR$, we give a sharp estimate of the upper bound of $\rho(x)=\dis(x, \partial M)$, in terms of the mean curvature bound of the boundary. When $\partial M$ is compact, the upper bound is achieved if and only if $M$ is isometric to a disk in space form. A Kaehler version of estimation is also proved. Moreover we prove a Laplace comparison theorem for distance function to the boundary of Kaehler manifold and also estimate the first eigenvalue of the real Laplacian.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133