全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Derivative at s = 1 of the p-adic L-function of the symmetric square of a Hilbert modular form

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let p be an odd prime and F a totally real number field. Let f be a Hilbert cuspidal eigenform of parallel weight 2, trivial Nebentypus and ordinary at p. It is possible to construct a p-adic L-function which interpolates the complex L-function associated to the symmetric square representation of f. This p-adic L-function vanishes at s=1 even if the complex L-function does not. Assuming p inert and f Steinberg at p, we give a formula for the p-adic derivative at s=1 of this p-adic L-function, generalizing unpublished work of Greenberg and Tilouine. Under some hypotheses on the conductor of f we prove a particular case of a conjecture of Greenberg on trivial zeros.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133