全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Relatively Prime Sets, Divisor Sums, and Partial Sums

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a nonempty finite set $A$ of positive integers, let $\gcd\left(A\right)$ denote the greatest common divisor of the elements of $A$. Let $f\left(n\right)$ and $\Phi\left(n\right)$ denote, respectively, the number of subsets $A$ of $\left\{1, 2, \ldots, n\right\}$ such that $\gcd\left(A\right) = 1$ and the number of subsets $A$ of $\left\{1, 2, \ldots, n\right\}$ such that $\gcd\left(A\cup\left\{n\right\}\right) =1$. Let $D\left(n\right)$ be the divisor sum of $f\left(n\right)$. In this article, we obtain partial sums of $f\left(n\right)$, $\Phi\left(n\right)$ and $D\left(n\right)$. We also obtain a combinatorial interpretation and a congruence property of $D\left(n\right)$. We give open questions concerning $\Phi\left(n\right)$ and $D\left(n\right)$ at the end of this article.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133