全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Unbounded Order Convergence and Application to Martingales without Probability

Full-Text   Cite this paper   Add to My Lib

Abstract:

A net $(x_\alpha)_{\alpha\in \Gamma}$ in a vector lattice $X$ is unbounded order convergent (uo-convergent) to $x$ if $|x_\alpha-x| \wedge y \xrightarrow{o} 0$ for each $y \in X_+$, and is unbounded order Cauchy (uo-Cauchy) if the net $(x_\alpha-x_{\alpha'})_{\Gamma\times \Gamma}$ is uo-convergent to 0. In the first part of this article, we study uo-convergent and uo-Cauchy nets in Banach lattices and use them to characterize Banach lattices with the positive Schur property and KB-spaces. In the second part, we use the concept of uo-Cauchy sequences to extend Doob's submartingale convergence theorems to a measure-free setting. Our results imply, in particular, that every norm bounded submartingale in $L_1(\Omega;F)$ is almost surely uo-Cauchy in $F$, where $F$ is an order continuous Banach lattice with a weak unit.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133