全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Discrete Homology Theory for Metric Spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we define and study a notion of discrete homology theory for metric spaces. Instead of working with simplicial homology, our chain complexes are given by Lipschitz maps from an $n$-dimensional cube to a fixed metric space. We prove that the resulting homology theory verifies a discrete analogue of the Eilenberg-Steenrod axioms, and prove a discrete analogue of the Mayer-Vietoris exact sequence. Moreover, this discrete homology theory is related to the discrete homotopy theory of a metric space through a discrete analogue of the Hurewicz theorem. We study the class of groups that can arise as discrete homology groups and, in this setting, we prove that the fundamental group of a smooth, connected, metrizable, compact manifold is isomorphic to the discrete fundamental group of a `fine enough' rectangulation of the manifold. Finally, we show that this discrete homology theory can be coarsened, leading to a new non-trivial coarse invariant of a metric space.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133