全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Expanders with respect to Hadamard spaces and random graphs

DOI: 10.1215/00127094-3119525

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is shown that there exists a sequence of 3-regular graphs $\{G_n\}_{n=1}^\infty$ and a Hadamard space $X$ such that $\{G_n\}_{n=1}^\infty$ forms an expander sequence with respect to $X$, yet random regular graphs are not expanders with respect to $X$. This answers a question of \cite{NS11}. $\{G_n\}_{n=1}^\infty$ are also shown to be expanders with respect to random regular graphs, yielding a deterministic sublinear time constant factor approximation algorithm for computing the average squared distance in subsets of a random graph. The proof uses the Euclidean cone over a random graph, an auxiliary continuous geometric object that allows for the implementation of martingale methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133