全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Geometry of the $L_q$-centroid bodies of an isotropic log-concave measure

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study some geometric properties of the $L_q$-centroid bodies $Z_q(\mu)$ of an isotropic log-concave measure $\mu $ on ${\mathbb R}^n$. For any $2\ls q\ls\sqrt{n}$ and for $\varepsilon \in (\varepsilon_0(q,n),1)$ we determine the inradius of a random $(1-\varepsilon)n$-dimensional projection of $Z_q(\mu)$ up to a constant depending polynomially on $\varepsilon $. Using this fact we obtain estimates for the covering numbers $N(\sqrt{\smash[b]{q}}B_2^n,tZ_q(\mu))$, $t\gr 1$, thus showing that $Z_q(\mu)$ is a $\beta $-regular convex body. As a consequence, we also get an upper bound for $M(Z_q(\mu))$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133