全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Deformations of period lattices of flexible polyhedral surfaces

DOI: 10.1007/s00454-014-9575-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the end of the 19th century Bricard discovered a phenomenon of flexible polyhedra, that is, polyhedra with rigid faces and hinges at edges that admit non-trivial flexes. One of the most important results in this field is a theorem of Sabitov asserting that the volume of a flexible polyhedron is constant during the flexion. In this paper we study flexible polyhedral surfaces in the 3-space two-periodic with respect to translations by two non-colinear vectors that can vary continuously during the flexion. The main result is that the period lattice of a flexible two-periodic surface homeomorphic to a plane cannot have two degrees of freedom.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133