全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Antiprismless, or: Reducing Combinatorial Equivalence to Projective Equivalence in Realizability Problems for Polytopes

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article exhibits a 4-dimensional combinatorial polytope that has no antiprism, answering a question posed by Bernt Lindst\"om. As a consequence, any realization of this combinatorial polytope has a face that it cannot rest upon without toppling over. To this end, we provide a general method for solving a broad class of realizability problems. Specifically, we show that for any semialgebraic property that faces inherit, the given property holds for some realization of every combinatorial polytope if and only if the property holds from some projective copy of every polytope. The proof uses the following result by Below. Given any polytope with vertices having algebraic coordinates, there is a combinatorial "stamp" polytope with a specified face that is projectively equivalent to the given polytope in all realizations. Here we construct a new stamp polytope that is closely related to Richter-Gebert's proof of universality for 4-dimensional polytopes, and we generalize several tools from that proof.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133