全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A properness result for degenerate Quadratic and Symplectic Bundles on a smooth projective curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(V,q)$ be a vector bundle on a smooth projective curve $X$ together with a quadratic form $q: \mathrm{Sym}^2(V) \ra \mathcal{O}_X$ (respectively symplectic form $q: \Lambda^2V \ra \mathcal{O}_X$). Fixing the degeneracy locus of the quadratic form induced on $V/\ker(q)$, we construct a coarse moduli of such objects. Further, we prove semi-stable reduction theorem for equivalence classes of such objects. In particular, the case when degeneracies of $q$ are higher than one is that of principal interest. We also provide a proof of properness of polystable orthogonal bundles without appealing to Bruhat-Tits theory in any characteristic.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133