全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On the Erd?s-Ginzburg-Ziv invariant and zero-sum Ramsey number for intersecting families

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $G$ be a finite abelian group, and let $m>0$ with $\exp(G)\mid m$. Let $s_{m}(G)$ be the generalized Erd\H{o}s-Ginzburg-Ziv invariant which denotes the smallest positive integer $d$ such that any sequence of elements in $G$ of length $d$ contains a subsequence of length $m$ with sum zero in $G$. For any integer $r>0$, let $\mathcal{I}_m^{(r)}$ be the collection of all $r$-uniform intersecting families of size $m$. Let $R(\mathcal{I}_m^{(r)},G)$ be the smallest positive integer $d$ such that any $G$-coloring of the edges of the complete $r$-uniform hypergraph $K_{d}^{(r)}$ yields a zero-sum copy of some intersecting family in $\mathcal{I}_m^{(r)}$. Among other results, we mainly prove that $\Omega(s_{m}(G))-1\leq R (\mathcal{I}_{m}^{(r)}, \ G)\leq \Omega(s_{m}(G)),$ where $\Omega(s_{m}(G))$ denotes the least positive integer $n$ such that ${n-1 \choose r-1}\geq s_{m}(G)$, and we show that if $r\mid \Omega(s_{m}(G))-1$ then $R (\mathcal{I}_{m}^{(r)}, \ G)= \Omega(s_{m}(G))$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133