全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Free actions of compact quantum group on unital C*-algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let F be a field, G a finite group, and Map(G,F) the Hopf algebra of all set-theoretic maps G->F. If E is a finite field extension of F and G is its Galois group, the extension is Galois if and only if the canonical map resulting from viewing E as a Map(G,F)-comodule is an isomorphism. Similarly, a finite covering space is regular if and only if the analogous canonical map is an isomorphism. In this paper we extend this point of view to actions of compact quantum groups on unital C*-algebras. We prove that such an action is free if and only if the canonical map (obtained using the underlying Hopf algebra of the compact quantum group) is an isomorphism. In particular, we are able to express the freeness of a compact Hausdorff topological group action on a compact Hausdorff topological space in algebraic terms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133