全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we consider supervised learning problems such as logistic regression and study the stochastic gradient method with averaging, in the usual stochastic approximation setting where observations are used only once. We show that after $N$ iterations, with a constant step-size proportional to $1/R^2 \sqrt{N}$ where $N$ is the number of observations and $R$ is the maximum norm of the observations, the convergence rate is always of order $O(1/\sqrt{N})$, and improves to $O(R^2 / \mu N)$ where $\mu$ is the lowest eigenvalue of the Hessian at the global optimum (when this eigenvalue is greater than $R^2/\sqrt{N}$). Since $\mu$ does not need to be known in advance, this shows that averaged stochastic gradient is adaptive to \emph{unknown local} strong convexity of the objective function. Our proof relies on the generalized self-concordance properties of the logistic loss and thus extends to all generalized linear models with uniformly bounded features.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133