全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton

Full-Text   Cite this paper   Add to My Lib

Abstract:

We associate a weight function to pairs consisting of a smooth and proper variety X over a complete discretely valued field and a differential form on X of maximal degree. This weight function is a real-valued function on the non-archimedean analytification of X. It is piecewise affine on the skeleton of any regular model with strict normal crossings of X, and strictly ascending as one moves away from the skeleton. We apply these properties to the study of the Kontsevich-Soibelman skeleton of such a pair, and we prove that this skeleton is connected when X has geometric genus one. This result can be viewed as an analog of the Shokurov-Kollar connectedness theorem in birational geometry.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133