全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

A surgery formula for the second Yamabe invariant

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(M,g)$ be a compact Riemannian manifold of dimension $n\geq 3$. For a metric $g$ on $M$, we let $\la_2(g)$ be the second eigenvalue of the Yamabe operator $L_g:= \frac{4(n-1)}{n-2} \Delta_g + \scal_g$. Then, the second Yamabe invariant is defined as $$ \si_2(M) \definedas \sup \inf_{h \in [g]} \la_2(h) \Vol(M,h)^{2/n}. $$ where the supremum is taken over all metrics $g$ and the infimum is taken over the metrics in the conformal class $[g]$. Assume that $\si_2(M)>0$. In the spirit of \cite{ammann.dahl.humbert:08}, we prove that if $N$ is obtained from $M$ by a $k$-dimensional surgery ($0 \leq k \leq n-3$), there exists a positive constant $\Lambda_n$ depending only on $n$ such that $\si_2(N) \geq \min(\sigma_2(M), \Lambda_n)$. We then give some topological conclusions of this result.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133