全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Stability and compactness for complete $f$-minimal surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(M,\bar{g}, e^{-f}d\mu)$ be a complete metric measure space with Bakry-\'Emery Ricci curvature bounded below by a positive constant. We prove that, in $M$, there is no complete two-sided $L_f$-stable immersed $f$-minimal hypersurface with finite weighted volume. Further, if $M$ is a 3-manifold, we prove a smooth compactness theorem for the space of complete embedded $f$-minimal surfaces in $M$ with the uniform upper bounds of genus and weighted volume, which generalizes the compactness theorem for complete self-shrinkers in $\mathbb{R}^3$ by Colding-Minicozzi.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133