全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Polynomiality, Wall Crossings and Tropical Geometry of Rational Double Hurwitz Cycles

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study rational double Hurwitz cycles, i.e. loci of marked rational stable curves admitting a map to the projective line with assigned ramification profiles over two fixed branch points. Generalizing the phenomenon observed for double Hurwitz numbers, such cycles are piecewise polynomial in the entries of the special ramification; the chambers of polynomiality and wall crossings have an explicit and "modular" description. A main goal of this paper is to simultaneously carry out this investigation for the corresponding objects in tropical geometry, underlining a precise combinatorial duality between classical and tropical Hurwitz theory.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133