全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

A variation norm Carleson theorem for vector-valued Walsh-Fourier series

DOI: 10.4171/RMI/804

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove a variation norm Carleson theorem for Walsh-Fourier series of functions with values in a UMD Banach space. Our only hypothesis on the Banach space is that it has finite tile-type, a notion introduced by Hyt\"onen and Lacey. Given q \geq 2 we show that, if the space X has tile-type t for all t>q, then the r-variation of the Walsh-Fourier sums of any function f \in L^p ([0,1) ; X) belongs to L^p, whenever qq. For intermediate spaces, i.e. spaces X= [Y,H]_s which are complex interpolation spaces between some UMD space Y and a Hilbert space H, the tile-type is q=2/s. We show that in this case the variation norm Carleson theorem remains true for all r > q in the larger range p > (2r/q)'.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133