全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Derivative Formulae and Poincaré Inequality for Kohn-Laplacian Type Semigroups

Full-Text   Cite this paper   Add to My Lib

Abstract:

As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator $L:=\ff 1 2 \sum_{i=1}^m X_i^2$ on $\R^{m+d}:= \R^m\times\R^d$ is investigated, where $$X_i(x,y)= \sum_{k=1}^m \si_{ki} \pp_{x_k} + \sum_{l=1}^d (A_l x)_i\pp_{y_l},\ \ (x,y)\in\R^{m+d}, 1\le i\le m$$ for $\si$ an invertible $m\times m$-matrix and $\{A_l\}_{1\le l\le d}$ some $m\times m$-matrices such that the H\"ormander condition holds. We first establish Bismut-type and Driver-type derivative formulae with applications on gradient estimates and the coupling/Liouville properties, which are new even for the heat semigroup on the Heisenberg group; then extend some recent results derived for the heat semigroup on the Heisenberg group.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133