全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Regularization of point vortices for the Euler equation in dimension two

DOI: 10.1007/s00205-013-0692-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem [ -\ep^2 \Delta u=(u-q-\frac{\kappa}{2\pi}\ln\frac{1}{\ep})_+^p, \quad & x\in\Omega, u=0, \quad & x\in\partial\Omega, ] where $p>1$, $\Omega\subset\mathbb{R}^2$ is a bounded domain, $q$ is a harmonic function. We showed that if $\Omega$ is simply-connected smooth domain, then for any given non-degenerate critical point of Kirchhoff-Routh function $\mathcal{W}(x_1,...,x_m)$ with the same strength $\kappa>0$, there is a stationary classical solution approximating stationary $m$ points vortex solution of incompressible Euler equations with vorticity $m\kappa$. Existence and asymptotic behavior of single point non-vanishing vortex solutions were studied by D. Smets and J. Van Schaftingen (2010).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133