全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Existence of nodal solutions for Dirac equations with singular nonlinearities

DOI: 10.1007/s00023-012-0224-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove, by a shooting method, the existence of infinitely many solutions of the form $\psi(x^0,x) = e^{-i\Omega x^0}\chi(x)$ of the nonlinear Dirac equation {equation*} i\underset{\mu=0}{\overset{3}{\sum}} \gamma^\mu \partial_\mu \psi- m\psi - F(\bar{\psi}\psi)\psi = 0 {equation*} where $\Omega>m>0,$ $\chi$ is compactly supported and \[F(x) = \{{array}{ll} p|x|^{p-1} & \text{if} |x|>0 0 & \text{if} x=0 {array}.] with $p\in(0,1),$ under some restrictions on the parameters $p$ and $\Omega.$ We study also the behavior of the solutions as $p$ tends to zero to establish the link between these equations and the M.I.T. bag model ones.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133