|
Mathematics 2012
On the connectivity of manifold graphsAbstract: This paper is concerned with lower bounds for the connectivity of graphs (one-dimensional skeleta) of triangulations of compact manifolds. We introduce a structural invariant b_M for simplicial d-manifolds M taking values in the range 0 <= b_M <= d-1. The main result is that b_M influences connectivity in the following way: The graph of a d-dimensional simplicial compact manifold M is (2d - b_M)-connected. The parameter b_M has the property that b_M = 0 if the complex M is flag. Hence, our result interpolates between Barnette's theorem (1982) that all d-manifold graphs are (d+1)-connected and Athanasiadis' theorem (2011) that flag d-manifold graphs are 2d-connected. The definition of b_M involves the concept of banner triangulations of manifolds, a generalization of flag triangulations.
|