全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

On polytopal upper bound spheres

DOI: 10.1112/S0025579313000016

Full-Text   Cite this paper   Add to My Lib

Abstract:

Generalizing a result (the case $k = 1$) due to M. A. Perles, we show that any polytopal upper bound sphere of odd dimension $2k + 1$ belongs to the generalized Walkup class ${\cal K}_k(2k + 1)$, i.e., all its vertex links are $k$-stacked spheres. This is surprising since the $k$-stacked spheres minimize the face-vector (among all polytopal spheres with given $f_0,..., f_{k - 1}$) while the upper bound spheres maximize the face vector (among spheres with a given $f_0$). It has been conjectured that for $d\neq 2k + 1$, all $(k + 1)$-neighborly members of the class ${\cal K}_k(d)$ are tight. The result of this paper shows that, for every $k$, the case $d = 2k +1$ is a true exception to this conjecture.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133