|
Mathematics 2012
Fractional Calculus - A Commutative Method on Real Analytic FunctionsAbstract: The traditional first approach to fractional calculus is via the Riemann-Liouville differintegral $_{a}D_{x}^{k}$. The intent of this paper will be to create a space $K$, pair of maps $g: C^{\omega}(\mathbb{R}) \to K$ and $g': K \to C^{\omega}(\mathbb{R}$), and operator $D^{k}: K \to K$ such that the operator $D^{k}$ commutes with itself, the map $g$ embeds $C^{\omega}(\mathbb{R}$) isomorphically into $K$, and the following diagram commutes; \xymatrix{C^{\omega}(\mathbb{R}) \ar[d]_{_{a}D_{x}^{k}} \ar[r]^{g} & K \ar[d]^{D^{k}} C^{\omega}(\mathbb{R}) & K \ar[l]^{g'}} \qquad This implies the following diagram commutes, for analytic $f$ such that $_{a}D_{x}^{j}f$ = 0 (i.e, if $f = \sum_{i \in I}b_{i}$(x-$a)^{i}$, where {$b_{i}} \subset \mathbb{R}$, and $I \subseteq {j-1, ..., j-\lfloor j \rfloor$}); \xymatrix{f \ar@/_3pc/[dd]_{_{a}D_{x}^{j+k}} \ar[d]^{_{a}D_{x}^{j}} \ar[r]^{g} & g(f) \ar[d]^{D^{j}} 0 & \ar[l]^{g'} D^{j}g(f) \ar[d]^{D^{k}} _{a}D_{x}^{j+k}f &\ar[l]^{g'} D^{k}D^{j}g(f)}
|