全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

A variable smoothing algorithm for solving convex optimization problems

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we propose a method for solving unconstrained optimization problems with convex and Lipschitz continuous objective functions. By making use of the Moreau envelopes of the functions occurring in the objective, we smooth the latter to a convex and differentiable function with Lipschitz continuous gradient by using both variable and constant smoothing parameters. The resulting problem is solved via an accelerated first-order method and this allows us to recover approximately the optimal solutions to the initial optimization problem with a rate of convergence of order $\O(\tfrac{\ln k}{k})$ for variable smoothing and of order $\O(\tfrac{1}{k})$ for constant smoothing. Some numerical experiments employing the variable smoothing method in image processing and in supervised learning classification are also presented.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133