|
Mathematics 2012
Image denoising: learning noise distribution via PDE-constrained optimizationAbstract: We propose a PDE-constrained optimization approach for the determination of noise distribution in total variation (TV) image denoising. An optimization problem for the determination of the weights correspondent to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems.
|