全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Systematic DFT Frames: Principle, Eigenvalues Structure, and Applications

DOI: 10.1109/TSP.2013.2264812

Full-Text   Cite this paper   Add to My Lib

Abstract:

Motivated by a host of recent applications requiring some amount of redundancy, frames are becoming a standard tool in the signal processing toolbox. In this paper, we study a specific class of frames, known as discrete Fourier transform (DFT) codes, and introduce the notion of systematic frames for this class. This is encouraged by a new application of frames, namely, distributed source coding that uses DFT codes for compression. Studying their extreme eigenvalues, we show that, unlike DFT frames, systematic DFT frames are not necessarily tight. Then, we come up with conditions for which these frames can be tight. In either case, the best and worst systematic frames are established in the minimum mean-squared reconstruction error sense. Eigenvalues of DFT frames and their subframes play a pivotal role in this work. Particularly, we derive some bounds on the extreme eigenvalues DFT subframes which are used to prove most of the results; these bounds are valuable independently.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133