全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Optimal Sampling Points in Reproducing Kernel Hilbert Spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

The recent developments of basis pursuit and compressed sensing seek to extract information from as few samples as possible. In such applications, since the number of samples is restricted, one should deploy the sampling points wisely. We are motivated to study the optimal distribution of finite sampling points. Formulation under the framework of optimal reconstruction yields a minimization problem. In the discrete case, we estimate the distance between the optimal subspace resulting from a general Karhunen-Loeve transform and the kernel space to obtain another algorithm that is computationally favorable. Numerical experiments are then presented to illustrate the performance of the algorithms for the searching of optimal sampling points.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133