全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Approximate Message Passing with Consistent Parameter Estimation and Applications to Sparse Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the estimation of an i.i.d. (possibly non-Gaussian) vector $\xbf \in \R^n$ from measurements $\ybf \in \R^m$ obtained by a general cascade model consisting of a known linear transform followed by a probabilistic componentwise (possibly nonlinear) measurement channel. A novel method, called adaptive generalized approximate message passing (Adaptive GAMP), that enables joint learning of the statistics of the prior and measurement channel along with estimation of the unknown vector $\xbf$ is presented. The proposed algorithm is a generalization of a recently-developed EM-GAMP that uses expectation-maximization (EM) iterations where the posteriors in the E-steps are computed via approximate message passing. The methodology can be applied to a large class of learning problems including the learning of sparse priors in compressed sensing or identification of linear-nonlinear cascade models in dynamical systems and neural spiking processes. We prove that for large i.i.d. Gaussian transform matrices the asymptotic componentwise behavior of the adaptive GAMP algorithm is predicted by a simple set of scalar state evolution equations. In addition, we show that when a certain maximum-likelihood estimation can be performed in each step, the adaptive GAMP method can yield asymptotically consistent parameter estimates, which implies that the algorithm achieves a reconstruction quality equivalent to the oracle algorithm that knows the correct parameter values. Remarkably, this result applies to essentially arbitrary parametrizations of the unknown distributions, including ones that are nonlinear and non-Gaussian. The adaptive GAMP methodology thus provides a systematic, general and computationally efficient method applicable to a large range of complex linear-nonlinear models with provable guarantees.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133