全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Approximability of convex bodies and volume entropy in Hilbert geometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

The approximability of a convex body is a number which measures the difficulty to approximate that body by polytopes. We prove that twice the approximability is equal to the volume entropy for a Hilbert geometry in dimension two end three and that in higher dimension it is a lower bound of the entropy. As a corollary we solve the entropy upper bound conjecture in dimension three and give a new proof in dimension two from the one found in Berck-Bernig-Vernicos (arXiv:0810.1123v2, published).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133