全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Length spectral rigidity of non-positively curved surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

Length spectral rigidity is the question of under what circumstances the geometry of a surface can be determined, up to isotopy, by knowing only the lengths of its closed geodesics. It is known that this can be done for negatively curved Riemannian surfaces, as well as for negatively-curved cone surfaces. Steps are taken toward showing that this holds also for flat cone surfaces, and it is shown that the lengths of closed geodesics are also enough to determine which of these three categories a geometric surface falls into. Techniques of Gromov, Bonahon, and Otal are explained and adapted, such as topological conjugacy, geodesic currents, Liouville measures, and the average angle between two geometric surfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133