全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Constructing doubly-pointed Heegaard diagrams compatible with (1,1) knots

Full-Text   Cite this paper   Add to My Lib

Abstract:

A (1,1) knot K in a 3-manifold M is a knot that intersects each solid torus of a genus 1 Heegaard splitting of M in a single trivial arc. Choi and Ko developed a parameterization of this family of knots by a four-tuple of integers, which they call Schubert's normal form. This article presents an algorithm for constructing a doubly-pointed Heegaard diagram compatible with K, given a Schubert's normal form for K. The construction, coupled with results of Ozsv\'ath and Szab\'o, provides a practical way to compute knot Floer homology groups for (1,1) knots. The construction uses train tracks, and its method is inspired by the work of Goda, Matsuda and Morifuji.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133