全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

On conjugations of circle homeomorphisms with two break points

DOI: 10.1017/etds.2012.159

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $f_i\in C^{2+\alpha}(S^1\setminus \{a_i,b_i\}), \alpha >0, i=1,2$ be circle homeomorphisms with two break points $a_i,b_i$, i.e. discontinuities in the derivative $f_i$, with identical irrational rotation number $rho$ and $\mu_1([a_1,b_1])= \mu_2([a_2,b_2])$, where $\mu_i$ are invariant measures of $f_i$. Suppose the products of the jump ratios of $Df_1$ and $Df_2$ do not coincide, i.e. $\frac{Df_1(a_1-0)}{Df_1(a_1+0)}\times \frac{Df_1(b_1-0)}{Df_1(b_1+0)}\neq \frac{Df_2(a_2-0)}{Df_2(a_2+0)}\times \frac{Df_2(b_2-0)}{Df_2(b_2+0)}$. Then the map $\psi$ conjugating $f_1$ and $f_2$ is a singular function, i.e. it is continuous on $S^1$, but $D\psi = 0$ a.e. with respect to Lebesgue measure

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133