全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MCP-1-Induced Histamine Release from Mast Cells Is Associated with Development of Interstitial Cystitis/Bladder Pain Syndrome in Rat Models

DOI: 10.1155/2012/358184

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by overexpression of monocyte chemoattractant protein-1 (MCP-1) in bladder tissues and induction of mast cell (MC) degranulation. This study was undertaken to explore the mechanism of action of MCP-1 in the development of IC/BPS. Methods. A rat model of IC/BPS was developed by perfusing bladders of nine SPF- grade female Sprague-Dawley rats with protamine sulfate and lipopolysaccharide (PS+LPS). MCP-1 and histamine levels in bladder tissue and urine were detected by immunohistochemistry and ELISA. MC degranulation was measured by immunofluorescence techniques and chemokine (C-C motif) receptor 2 (CCR2) was assayed by flow cytometry. Results. Increased MCP-1 expression in bladder tissue and elevated MCP-1 and histamine levels were observed in the urine of LS+LPS-treated rats. This was accompanied by the expression of CCR2 on MC surfaces, suggesting MCP-1 may induce MC degranulation through CCR2. Exposure to LPS stimulated MCP-1 expression in bladder epithelial cells, and exposure to MCP-1 induced histamine release from MCs. Conclusions. MCP-1 upregulation in IC/BPS is one of possible contributing factors inducing histamine release from MCs. CCR2 is involved in the process of mast cell degranulation in bladder tissues. These changes may contribute to the development of symptoms of IC/BPS. 1. Introduction Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory condition that is difficult to characterize without precise knowledge of the symptoms and histology that characterizes the disease [1]. Commonly observed symptoms include urinary frequency, urgency, and suprapublic pain that often drastically affect the quality of life of affected patients [2–4]. It is generally thought that the development and progression of IC/BPS is associated with infection, defects in bladder permeability, immune or neuroendocrine disorders, and genetic disorders related to visceral hypersensitivity [5–7]. Despite comprehensive characterization of symptoms and histology of IC/BPS in recent decades, its exact etiology remains unclear, limiting the development of effective therapeutic interventions. Mast cells (MCs), long suspected to play a role in the onset of IC/BPS, are derived from specific precursors localized in the bone marrow [8]. These precursors are stimulated to maturation by local tissue microenvironmental factors that vary according to the tissue types [9]. MC stimulation has been shown to facilitate the degranulation and release of vasoactive, proinflammatory, and

References

[1]  K. E. Whitmore and T. C. Theoharides, “When to suspect interstitial cystitis,” The Journal of Family Practice, vol. 60, no. 6, pp. 340–348, 2011.
[2]  L. M. French and N. Bhambore, “Interstitial cystitis/painful bladder syndrome,” American Family Physician, vol. 83, no. 10, pp. 1175–1181, 2011.
[3]  C. A. Jones and L. Nyberg, “Epidemiology of interstitial cystitis,” Urology, vol. 49, no. 5, supplement 1, pp. 2–9, 1997.
[4]  U. Wesselmann, “Neurogenic inflammation and chronic pelvic pain,” World Journal of Urology, vol. 19, no. 3, pp. 180–185, 2001.
[5]  M. Gamper, V. Viereck, V. Geissbühler et al., “Gene expression profile of bladder tissue of patients with ulcerative interstitial cystitis,” BMC Genomics, vol. 10, article 199, 2009.
[6]  M. Holm-Bentzen, “Pathology and pathophysiology of painful bladder diseases,” Urologia Internationalis, vol. 44, no. 6, pp. 327–331, 1989.
[7]  M. S. Mahmoud, “Bladder pain syndrome/interstitial cystitis: a reappraisal for the clinician,” The Journal of Reproductive Medicine, vol. 56, no. 9-10, pp. 405–409, 2011.
[8]  F. Roberts and C. R. Calcutt, “Histamine and the hypothalamus,” Neuroscience, vol. 9, no. 4, pp. 721–739, 1983.
[9]  T. C. Theoharides and D. E. Cochrane, “Critical role of mast cells in inflammatory diseases and the effect of acute stress,” Journal of Neuroimmunology, vol. 146, no. 1-2, pp. 1–12, 2004.
[10]  S. J. Galli, J. Wedemeyer, and M. Tsai, “Analyzing the roles of mast cells and basophils in host defense and other biological responses,” International Journal of Hematology, vol. 75, no. 4, pp. 363–369, 2002.
[11]  G. R. Sant and T. C. Theoharides, “The role of the mast cell in interstitial cystitis,” Urologic Clinics of North America, vol. 21, no. 1, pp. 41–53, 1994.
[12]  I. T. Harvima, G. Nilsson, and A. Naukkarinen, “Role of mast cells and sensory nerves in skin inflammation,” Giornale Italiano di Dermatologia e Venereologia, vol. 145, no. 2, pp. 195–204, 2010.
[13]  T. Kimura, K. Kitaichi, K. Hiramatsu et al., “Intradermal application of nociceptin increases vascular permeability in rats: the possible involvement of histamine release from mast cells,” European Journal of Pharmacology, vol. 407, no. 3, pp. 327–332, 2000.
[14]  T. C. Theoharides, G. R. Sant, M. El-Mansoury, R. Letourneau, A. A. Ucci Jr., and E. M. Meares Jr., “Activation of bladder mast cells in interstitial cystitis: a light and electron microscopic study,” Journal of Urology, vol. 153, no. 3, part 1, pp. 629–636, 1995.
[15]  G. Chiang, P. Patra, R. Letourneau et al., “Pentosanpolysulfate inhibits mast cell histamine secretion and intracellular calcium ion levels: an alternative explanation of its beneficial effect in interstitial cystitis,” Journal of Urology, vol. 164, no. 6, pp. 2119–2125, 2000.
[16]  J. Fagerli, M. O. Fraser, W. C. deGroat, et al., “Intravesical capsaicin for the treatment of interstitial cystitis: a pilot study,” The Canadian Journal of Urology, vol. 6, no. 2, pp. 737–744, 1999.
[17]  L. M. Lamale, S. K. Lutgendorf, M. B. Zimmerman, and K. J. Kreder, “Interleukin-6, histamine, and methylhistamine as diagnostic markers for interstitial cystitis,” Urology, vol. 68, no. 4, pp. 702–706, 2006.
[18]  F. G. Blankenberg, P. Wen, M. Dai et al., “Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats,” Pediatric Radiology, vol. 31, no. 12, pp. 827–835, 2001.
[19]  A. Stankovic, V. Slavic, B. Stamenkovic, B. Kamenov, M. Bojanovic, and D. R. Mitrovic, “Serum and synovial fluid concentrations of CCL2 (MCP-1) chemokine in patients suffering rheumatoid arthritis and osteoarthritis reflect disease activity,” Bratislavske Lekarske Listy, vol. 110, no. 10, pp. 641–646, 2009.
[20]  J. Lv, Y. Luo, J. Leng, W. Xue, D. Liu, and Y. Huang, “Aberrant expression of monocyte chemoattractant protein-1 (mcp-1) in interstitial cystitis patients,” Scientific Research and Essays, vol. 5, no. 7, pp. 663–667, 2010.
[21]  M. L. Castellani, M. A. De Lutiis, E. Toniato et al., “Impact of RANTES, MCP-1 and IL-8 in mast cells,” Journal of Biological Regulators and Homeostatic Agents, vol. 24, no. 1, pp. 1–6, 2010.
[22]  J. Chao, G. Blanco, J. G. Wood, and N. C. Gonzalez, “Renin released from mast cells activated by circulating MCP-1 initiates the microvascular phase of the systemic inflammation of alveolar hypoxia,” American Journal of Physiology, vol. 301, no. 6, pp. 2264–2270, 2011.
[23]  M. R. Saban, R. Saban, T. G. Hammond et al., “LPS-sensory peptide communication in experimental cystitis,” American Journal of Physiology, vol. 282, no. 2, pp. F202–F210, 2002.
[24]  G. H. Caughey, “Mast cell tryptases and chymases in inflammation and host defense,” Immunological Reviews, vol. 217, no. 1, pp. 141–154, 2007.
[25]  N. N. Trivedi and G. H. Caughey, “Mast cell peptidases: chameleons of innate immunity and host defense,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 3, pp. 257–267, 2010.
[26]  P. C. Stein, H. Pham, T. Ito, and C. L. Parsons, “Bladder injury model induced in rats by exposure to protamine sulfate followed by bacterial endotoxin,” Journal of Urology, vol. 155, no. 3, pp. 1133–1138, 1996.
[27]  C. N. Rudick, P. J. Bryce, L. A. Guichelaar, R. E. Berry, and D. J. Klumpp, “Mast cell-derived histamine mediates cystitis pain,” PLoS ONE, vol. 3, no. 5, Article ID e2096, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133