Anti-Inflammatory Effects of Concentrated Ethanol Extracts of Edelweiss (Leontopodium alpinum Cass.) Callus Cultures towards Human Keratinocytes and Endothelial Cells
Edelweiss (Leontopodium alpinum Cass.) is traditionally employed in folk medicine as an anti-inflammatory remedy. In nature, the plant is sparsely available and protected; therefore production of callus cultures was established. A concentrated ethanolic extract of culture homogenate, with leontopodic acid representing % of the total phenolic fraction (ECC55), was characterized for anti-inflammatory properties in primary human keratinocytes (PHKs) and endotheliocytes (HUVECs). Inflammatory responses were induced by UVA+UVB, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), and a mixture of proinflammatory cytokines. Trichostatin A, a sirtuin inhibitor, was used to induce keratinocyte inflammatory senescence. ECC55 (10–50?μg/mL) protected PHK from solar UV-driven damage, by enhancing early intracellular levels of nitric oxide, although not affecting UV-induced expression of inflammatory genes. Comparison of the dose-dependent inhibition of chemokine (IL-8, IP-10, MCP-1) and growth factor (GM-CSF) release from PHK activated by TNFα + IFNγ showed that leontopodic acid was mainly responsible for the inhibitory effects of ECC55. Sirtuin-inhibited cell cycle, proliferation, and apoptosis markers were restored by ECC55. The extract inhibited LPS-induced IL-6 and VCAM1 genes in HUVEC, as well as oxLDL-induced selective VCAM1 overexpression. Conclusion. Edelweiss cell cultures could be a valuable source of anti-inflammatory substances potentially applicable for chronic inflammatory skin diseases and bacterial and atherogenic inflammation. 1. Introduction Since ancient time, plants have been undiminished sources of products traditionally used for medicinal and skin care purposes. In our highly technological era, natural substances of plant origin remain major active principles of numerous drugs and “ceuticals” (nutraceuticals and cosmeceuticals). According to pharmacological statistics, 12 out of 40 anti-inflammatory drugs approved between 1983 and 1994 worldwide were derived from or based on secondary plant metabolites, mainly polyphenols [1]. Recently, a number of in vitro and in vivo animal studies have provided first scientific evidence for ethnopharmacological use of Leontopodium alpinum Cass. (family Asteraceae, named also Edelweiss) as a potent anti-inflammatory [2–5] and antibacterial remedy [6, 7]. Edelweiss is a famous plant sparsely distributed in high mountains of Europe and Asia at altitude of 1800–3000?m. The rare plant spontaneously grows in inaccessible areas, and it is protected in many countries [8]. In European folk medicine,
References
[1]
J. H. Yoon and S. J. Baek, “Molecular targets of dietary polyphenols with anti-inflammatory properties,” Yonsei Medical Journal, vol. 46, no. 5, pp. 585–596, 2005.
[2]
M. J. Dobner, S. Sosa, S. Schwaiger et al., “Anti-inflammatory activity of Leontopodium alpinum and its constituents,” Planta Medica, vol. 70, no. 6, pp. 502–508, 2004.
[3]
U. Reisinger, S. Schwaiger, I. Zeller et al., “Leoligin, the major lignan from edelweiss, inhibits intimal hyperplasia of venous bypass grafts,” Cardiovascular Research, vol. 82, no. 3, pp. 542–549, 2009.
[4]
S. Schwaiger, M. Adams, C. Seger, E. P. Ellmerer, R. Bauer, and H. Stuppner, “New constituents of Leontopodium alpinum and their in vitro leukotriene biosynthesis inhibitory activity,” Planta Medica, vol. 70, no. 10, pp. 978–985, 2004.
[5]
E. Speroni, S. Schwaiger, P. Egger et al., “In vivo efficacy of different extracts of edelweiss (Leontopodium alpinum Cass.) in animal models,” Journal of Ethnopharmacology, vol. 105, no. 3, pp. 421–426, 2006.
[6]
S. Costa, S. Schwaiger, R. Cervellati, H. Stuppner, E. Speroni, and M. C. Guerra, “In vitro evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenol-induced cell damage,” Journal of Applied Toxicology, vol. 29, no. 1, pp. 7–14, 2009.
[7]
M. J. Dobner, S. Schwaiger, I. H. Jenewein, and H. Stuppner, “Antibacterial activity of Leontopodium alpinum (Edelweiss),” Journal of Ethnopharmacology, vol. 89, no. 2-3, pp. 301–303, 2003.
[8]
S. Grabley and R. Thiericke, “Bioactive agents from natural sources: trends in discovery and application,” Advances in Biochemical Engineering/Biotechnology, vol. 64, pp. 101–154, 1999.
[9]
R. Chiej, “Edelweiss,” in The Macdonald Encyclopoedia of Medicinal Plants, Macdonald Orbis, Hallatrow, UK, 1988.
[10]
A. C. Dweck, “A review of edelweiss,” S?FT-Journal, vol. 130, pp. 65–68, 2004.
[11]
S. Schwaiger, R. Cervellati, C. Seger et al., “Leontopodic acid—a novel highly substituted glucaric acid derivative from edelweiss (Leontopodium alpinum Cass.) and its antioxidative and DNA protecting properties,” Tetrahedron, vol. 61, no. 19, pp. 4621–4630, 2005.
[12]
S. Schwaiger, C. Seger, B. Wiesbauer et al., “Development of an HPLC-PAD-MS assay for the identification and quantification of major phenolic edelweiss (Leontopodium alpium Cass.) constituents,” Phytochemical Analysis, vol. 17, no. 5, pp. 291–298, 2006.
[13]
L. G. Korkina and V. A. Kostyuk, “Biotechnologically produced secondary plant metabolites for cancer treatment and prevention,” Current Pharmaceutical Biotechnology, vol. 12, pp. 265–275, 2011.
[14]
T. A. Thorpe, “History of plant tissue culture,” Molecular Biotechnology, vol. 37, no. 2, pp. 169–180, 2007.
[15]
L. G. Korkina, “Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health,” Cellular and Molecular Biology, vol. 53, no. 1, pp. 15–25, 2007.
[16]
N. Crespi-Perellino, L. Garofano, E. Arlandini et al., “Identification of new diterpenoids from Euphorbia calyptrata cell cultures,” Journal of Natural Products, vol. 59, no. 8, pp. 773–776, 1996.
[17]
S. Pastore, F. Mascia, F. Mariotti, C. Dattilo, V. Mariani, and G. Girolomoni, “ERK1/2 regulates epidermal chemokine expression and skin inflammation,” Journal of Immunology, vol. 174, no. 8, pp. 5047–5056, 2005.
[18]
A. I. Potapovich, D. Lulli, P. Fidanza, et al., “Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription fators NFκB and AhR and EGFR-ERK pathway,” Toxicology and Applied Pharmacology, vol. 255, pp. 138–149, 2011.
[19]
S. Pastore, F. Mascia, V. Mariani, and G. Girolomoni, “Keratinocytes in skin inflammation,” Expert Reviews in Dermatology, vol. 1, pp. 279–291, 2006.
[20]
V. A. Kostyuk, A. I. Potapovich, T. O. Suhan, C. De Luca, and L. G. Korkina, “Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation,” European Journal of Pharmacology, vol. 658, no. 2-3, pp. 248–256, 2011.
[21]
K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.
[22]
H. Kojima, N. Nakatsubo, K. Kikuchi et al., “Detection and imaging of nitric oxide with novel fluorescent indicators, diaminofluoresceins,” Analytical Chemistry, vol. 70, no. 13, pp. 2446–2453, 1998.
[23]
V. Kostyuk, A. Potapovich, T. Suhan et al., “Plant polyphenols against UV-C-induced cellular death,” Planta Medica, vol. 74, no. 5, pp. 509–514, 2008.
[24]
Y. Liu, F. Chan, H. Sun et al., “Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression,” European Journal of Pharmacology, vol. 650, no. 1, pp. 130–137, 2011.
[25]
P. Roy, E. Madan, N. Kalra, et al., “Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-kappa B pathway in human epidermoid carcinoma A431 cells,” Biochemical and Biophysical Research Communications, vol. 384, pp. 215–220, 2009.
[26]
L. G. Korkina, C. De Luca, V. A. Kostyuk, and S. Pastore, “Plant polyphenols and tumors: from mechanisms to therapies, prevention, and protection against toxicity of anti-cancer treatments,” Current Medicinal Chemistry, vol. 16, no. 30, pp. 3943–3965, 2009.
[27]
W. Liu and S. Wu, “Differential roles of nitric oxide synthases in regulation of ultraviolet B light-induced apoptosis,” Nitric Oxide, vol. 23, no. 3, pp. 199–205, 2010.
[28]
S. Pastore, D. Lulli, A. I. Potapovich et al., “Differential modulation of stress-inflammation responses by plant polyphenols in cultured normal human keratinocytes and immortalized HaCaT cells,” Journal of Dermatological Science, vol. 63, no. 2, pp. 104–114, 2011.
[29]
S. Wu, L. Wang, A. M. Jacoby, K. Jasinski, R. Kubant, and T. Malinski, “Ultraviolet B light-induced nitric oxide peroxynitrite imbalance in keratinocytes—implications for apoptosis and necrosis,” Photochemistry and Photobiology, vol. 86, no. 2, pp. 389–396, 2010.
[30]
R. Di Paola, E. Esposito, E. Mazzon et al., “3,5-Dicaffeoyl-4-malonylquinic acid reduced oxidative stress and inflammation in a experimental model of inflammatory bowel disease,” Free Radical Research, vol. 44, no. 1, pp. 74–89, 2010.
[31]
M. Yonathan, K. Asres, A. Assefa, and F. Bucar, “In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa,” Journal of Ethnopharmacology, vol. 108, no. 3, pp. 462–470, 2006.
[32]
J. Munro, N. I. Barr, H. Ireland, V. Morrison, and E. K. Parkinson, “Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock,” Experimental Cell Research, vol. 295, no. 2, pp. 525–538, 2004.
[33]
S. Cordisco, R. Maurelli, S. Bondanza et al., “Bmi-1 reduction plays a key role in physiological and premature aging of primary human keratinocytes,” Journal of Investigative Dermatology, vol. 130, no. 4, pp. 1048–1062, 2010.
[34]
R. Rodriguez and M. Meuth, “Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress,” Molecular Biology of the Cell, vol. 17, no. 1, pp. 402–412, 2006.
[35]
A. Balcerczyk and L. Pirola, “Therapeutic potential of activators and inhibitors of sirtuins,” BioFactors, vol. 36, no. 5, pp. 383–393, 2010.
[36]
S. Kyrylenko and A. Baniahmad, “Sirtuin family: a link to metabolic signaling and senescence,” Current Medicinal Chemistry, vol. 17, no. 26, pp. 2921–2932, 2010.
[37]
T. Vanhaecke, P. Papeleu, G. Elaut, and V. Rogiers, “Trichostatin A—like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view,” Current Medicinal Chemistry, vol. 11, no. 12, pp. 1629–1643, 2004.
[38]
S. Chung, H. Yao, S. Caito, J. W. Hwang, G. Arunachalam, and I. Rahman, “Regulation of SIRT1 in cellular functions: role of polyphenols,” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 79–90, 2010.
[39]
L. J. Hofseth, U. P. Singh, N. P. Singh, M. Nagarkatti, and P. S. Nagarkatti, “Taming the beast within: resveratrol suppresses colitis and prevents colon cancer,” Aging, vol. 2, no. 4, pp. 183–184, 2010.
[40]
U. P. Singh, N. P. Singh, B. Singh et al., “Resveratrol (Trans-3,5,4'-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factor-κB activation to abrogate dextran sulfate sodium-induced colitis,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 3, pp. 829–839, 2010.
[41]
A. Banning and R. Brigelius-Flohé, “NF-κB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression,” Antioxidants and Redox Signaling, vol. 7, no. 7-8, pp. 889–899, 2005.