全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

The boundary value problem for discrete analytic functions

DOI: 10.1016/j.aim.2013.03.002

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is on further development of discrete complex analysis introduced by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal. We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S. Smirnov from 2010. This was proved earlier by R. Courant-K. Friedrichs-H. Lewy and L. Lusternik for square lattices, by D. Chelkak-S. Smirnov and implicitly by P.G. Ciarlet-P.-A. Raviart for rhombic lattices. In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A. Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133