全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Shortest billiard trajectories

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove that any convex body of the d-dimensional Euclidean space (d>1) possesses at least one shortest generalized billiard trajectory moreover, any of its shortest generalized billiard trajectories is of period at most d+1. Actually, in the Euclidean plane we improve this theorem as follows. A disk-polygon with parameter r>0 is simply the intersection of finitely many (closed) circular disks of radii r, called generating disks, having some interior point in common in the Euclidean plane. Also, we say that a disk-polygon with parameter r>0 is a fat disk-polygon if the pairwise distances between the centers of its generating disks are at most r. We prove that any of the shortest generalized billiard trajectories of an arbitrary fat disk-polygon is a 2-periodic one. Also, we give a proof of the analogue result for {\epsilon}-rounded disk-polygons obtained from fat disk-polygons by rounding them off using circular disks of radii {\epsilon}>0. Our theorems give partial answers to the very recent question raised by S. Zelditch on characterizing convex bodies whose shortest periodic billiard trajectories are of period 2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133