全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Symplectic bifurcation theory for integrable systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper develops a symplectic bifurcation theory for integrable systems in dimension four. We prove that if an integrable system has no hyperbolic singularities and its bifurcation diagram has no vertical tangencies, then the fibers of the induced singular Lagrangian fibration are connected. The image of this singular Lagrangian fibration is, up to smooth deformations, a planar region bounded by the graphs of two continuous functions. The bifurcation diagram consists of the boundary points in this image plus a countable collection of rank zero singularities, which are contained in the interior of the image. Because it recently has become clear to the mathematics and mathematical physics communities that the bifurcation diagram of an integrable system provides the best framework to study symplectic invariants, this paper provides a setting for studying quantization questions, and spectral theory of quantum integrable systems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133