|
Mathematics 2011
Universal cycles and homological invariants of locally convex algebrasAbstract: Using an appropriate notion of locally convex Kasparov modules, we show how to induce isomorphisms under a large class of functors on the category of locally convex algebras; examples are obtained from spectral triples. Our considerations are based on the action of algebraic K-theory on these functors, and involve compatibility properties of the induction process with this action, and with Kasparov-type products. This is based on an appropriate interpretation of the Connes-Skandalis connection formalism. As an application, we prove Bott periodicity and a Thom isomorphism for algebras of Schwartz functions.
|