全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Sobolev Homeomorphisms and Composition Operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study invertibility of bounded composition operators of Sobolev spaces. The problem is closely connected with the theory of mappings of finite distortion. If a homeomorphism $\varphi$ of Euclidean domains $D$ and $D'$ generates by the composition rule $\varphi^{\ast}f=f\circ\varphi$ a bounded composition operator of Sobolev spaces $\varphi^{\ast}: L^1_{\infty}(D')\to L^1_p(D)$, $p>n-1$, has finite distortion and Luzin $N$-property then its inverse $\varphi^{-1}$ generates the bounded composition operator from $L^1_{p'}(D)$, $p'=p/(p-n+1)$, into $L^1_{1}(D')$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133