|
Mathematics 2009
Sharp inequalities for polygamma functionsDOI: 10.1515/ms-2015-0010 Abstract: The main aim of this paper is to prove that the double inequality \frac{(k-1)!}{\Bigl\{x+\Bigl[\frac{(k-1)!}{|\psi^{(k)}(1)|}\Bigr]^{1/k}\Bigr\}^k} +\frac{k!}{x^{k+1}}<\bigl|\psi^{(k)}(x)\bigr|<\frac{(k-1)!}{\bigl(x+\frac12\bigr)^k}+\frac{k!}{x^{k+1}} holds for $x>0$ and $k\in\mathbb{N}$ and that the constants $\Bigl[\frac{(k-1)!}{|\psi^{(k)}(1)|}\Bigr]^{1/k}$ and $\frac12$ are the best possible. In passing, some related inequalities and (logarithmically) complete monotonicity results concerning the gamma, psi and polygamma functions are surveyed.
|